Nutritive blood flow affects microdialysis O/I ratio for [(14)C]ethanol and (3)H(2)O in perfused rat hindlimb.

نویسندگان

  • J M Newman
  • C A Di Maria
  • S Rattigan
  • M G Clark
چکیده

Changes in the microdialysis outflow-to-inflow (O/I) ratio for [(14)C]ethanol and (3)H(2)O were determined in the perfused rat hindlimb after increases and decreases in nutritive flow mediated by the vasoconstrictors norepinephrine (NE) and serotonin (5-HT), respectively. Microdialysis probes (containing 10 mM [(14)C]ethanol and (3)H(2)O pumped at 1 or 2 microl/min) were inserted through the calf of the rat. Hindlimb perfusion flow rate was varied from 6 to 56 ml x min(-1) x 100 g(-1) in the presence of NE, 5-HT, or saline vehicle. The O/I ratios for both tracers were determined at each perfusion flow rate, as was perfusion pressure, oxygen uptake (a surrogate indicator of nutritive flow), and lactate release. Both tracers showed a decreased O/I ratio as hindlimb perfusion flow was increased, with [(14)C]ethanol being higher than (3)H(2)O. NE decreased the O/I ratio compared with vehicle, and 5-HT increased it for both tracers and both microdialysis flow rates. We conclude that the microdialysis O/I ratio, while able to detect changes in total flow, is also sensitive to changes in nutritive and nonnutritive flow, where the latter still extracts tracer, but less than the former.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute effects of ethanol on the perfused rat liver. Studies on lipid and carbohydrate metabolism, substrate cycling and perfusate amino acids.

1. Livers from fed rats were perfused in situ with whole rat blood containing glucose labelled uniformly with (14)C and specifically with (3)H at positions 2, 3 or 6. 2. When ethanol was infused at a concentration of 24mumol/ml of blood the rate of utilization was 2.8mumol/min per g of liver. 3. Ethanol infusion raised perfusate glucose concentrations and caused a 2.5-fold increase in hepatic g...

متن کامل

The effect of vasoconstrictors on oxygen consumption in resting and contracting skeletal muscle of the autologous pump-perfused rat hindlimb.

This study used a novel in vivo model to test the hypothesis that nutritive and non-nutritive blood flow distribution can still be observed under conditions of high vascular tone and oxygen delivery at rest and in metabolically active (twitch contracting) skeletal muscle. Experiments were performed in a constant flow autologous pump-perfused hindlimb in anaesthetised male Wistar rats. Agonists ...

متن کامل

Morphine releases glutamate through AMPA receptors in the ventral tegmental area: a microdialysis study in conscious rats

Drug addiction has developed to a social illness. Changes in glutamate transmission have been recorded by the repeated administration of addictive drugs into VTA. In this investigation, In vivo microdialysis was used to study the effects of morphine on glutamate release from the ventral tegmentum area (VTA) in freely moving rats. Rats were anesthetized with chloral hydrate (350 mg/kg, i.p.) and...

متن کامل

Morphine releases glutamate through AMPA receptors in the ventral tegmental area: a microdialysis study in conscious rats

Drug addiction has developed to a social illness. Changes in glutamate transmission have been recorded by the repeated administration of addictive drugs into VTA. In this investigation, In vivo microdialysis was used to study the effects of morphine on glutamate release from the ventral tegmentum area (VTA) in freely moving rats. Rats were anesthetized with chloral hydrate (350 mg/kg, i.p.) and...

متن کامل

Microdialysis with radiometric monitoring of L-[β-11C]DOPA to assess dopaminergic metabolism: effect of inhibitors of L-amino acid decarboxylase, monoamine oxidase, and catechol-O-methyltransferase on rat striatal dialysate.

The catecholamine, dopamine (DA), is synthesized from 3,4-dihydroxy-L-phenylalanine (L-DOPA) by aromatic L-amino acid decarboxylase (AADC). Dopamine metabolism is regulated by monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). To measure dopaminergic metabolism, we used microdialysis with radiometric detection to monitor L-[β-(11)C]DOPA metabolites in the extracellular space of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 281 6  شماره 

صفحات  -

تاریخ انتشار 2001